

Barley Basics

Effects were discovered in 1980's University of Bristol, Department of Agriculture Science Professor J. R. Newman

Controlled algae in stock ponds Laboratory studies begun Examined both algal and fungi forms Observed Inhibition - Re-growth - Inhibition

NOTED - Significant chemicals released

Decomposing Barley Straw

Barley Basics

Barley decomposes slowly in the water

Decomposition chemicals are released (H₂O₂, polyphenolics)

Process occurs at a microbial level

Algae cell walls lysis

Temperature is one dependent factor

Algae growth continues

Color (tannin) is not considered to be a factor

Process NOT fully studied or understood

Decomposing Barley Straw

Barley Basics

About Hydrogen Peroxide - H2O2

Found to be a product of decomposition

Does not appear to be effective alone

About Polyphenols - Tannins

Found to be a product of decomposition

Tannins are hydrolyzed by weak acids or weak bases to produce carbohydrate and phenolic acids

Barley Basics

Decomposition starts slowly

Water may turn light brown initially - tannins

Continues for four to six weeks

If you see straw, decomposition is occurring

Varies by algae

Unicellular algae affected first

Long stringing algae take longer

Sludge mats unaffected

Pond scum unaffected

Duckweed unaffected

Decomposing Barley Straw

Applying Barley

Floating booms "barley burrito"

Allow for wind and wave mixing

Away from structures (aerators)

Effectiveness is proportional to quantity
Therefore, replace regularly

Surface <u>area</u> not volume is main factor

175 to 350 pounds per acre

Decomposing Barley Straw

UDWQ Barley Study

After reading this research, the Division of Water Quality, began to investigate the possibility of using Barley on a hypertrophic system - wastewater lagoon

Why was UDWQ interested?

Decomposing Barley Straw

Wastewater Algaes

Most of the breakdown of organic waste in a wastewater lagoon system is done by aerobic decomposition

How is oxygen supplied?

Aeration

Wind action

Algae - photosynthesis

DWQ Barley Study

In 2004 DWQ partnered with Mt. Green SID to evaluated the effect of barley straw for algae (total suspended solids) control

Applied barley

Conducted weekly TSS sampling

Thanks to Central Davis SD for providing the testing

TSS:BOD Ratio	
TSS:BOD Ratio	Possible Causes
<1	old sludge solubilization and release of soluble BOD_5 nitrification in the test bottle
1	poor treatment or short circuiting with loss of untreated wastewater to the effluent
1.5	normal for most lagoon systems
>2.0	algal overgrowth loss of old sludge particles

Mt. Green - Case Study

About 40 miles Northeast of Salt Lake Population 1,200 (2004) Rapid growth Large receiving stream - Weber River

Annual suspended solids problem (surprise!)

NOV issued (fine collected)

Decomposing Barley Straw

Mt. Green - Case Study

Three - cell aerated lagoon

Daily flow - 132,000 gpd

Influent - $BOD_5 = 150 - 235 mg/L$ Influent - TSS = 185 - 280 mg/L

Permit limits - BOD_5 45 mg/L, TSS 45 mg/L

Decomposing Barley Straw

Mt. Green - Case Study

Application method

Application - 1 oz / yd² (303 lbs / acre) - 3 bails!

Flotation - 3 gallon jugs, 6 feet apart

Sealant - silicon to seal caps

Configuration - sausage boom

Location - diagonally, upwind, in mixing pattern

Anchor - double strands of poly rope tied to posts

Decomposing Barley Straw

Mt. Green - Case Study

DWQ personnel conned into doing this!

5/19/04

Beta version

Mt. Green - Case Study

Costs
Three forty-pound bales of barley straw @ \$1
One 100 ft roll of snow fence @ \$30
Two rolls 350 lb test polyethylene rope @ \$10
Two fence post @ \$1.89
Three Government demonstrators @ \$ 0.01 (over paid)
Two and a half hours on a sunny day
Total - approximately \$45

Mt. Green - Case Study

No violations in 2004 - 2007 Average TSS 1999 - 2003 - 34 mg/L Average TSS 2004 - 2007 - 24 mg/L 29.4 % decrease in TSS values

Appears to show a dose response relationship

Decomposing Barley Straw

DWQ Barley Study

Based upon the results from Mt. Green, DWQ partnered with Utah Rural Water to conduct more studies $\,$

Ash Creek SID

Eureka City

Salem City

Southern Utah Fuels Company

Pacific States Cast Iron

Decomposing Barley Straw

Ash Creek - Case Study

A Land application treatment
About 15 miles northeast of St. George
Population 9,800 (2005)
Rapid growth
Land application treatment
Looking to reduce chlorine costs

Decomposing Barley Straw

Ash Creek - Case Study

Decomposing Barley Straw

Ash Creek - Case Study

Ash Creek - Case Study

40 % decrease in TSS values

Appears to show a dose response relationship

Decomposing Barley Straw

Salem - Case Study

About 50 miles South of Salt Lake
Population 6,500
Rapid growth
Small receiving stream - Beer Creek

Annual suspended solids problem (surprise!)

NOV issued (fine collected)

Salem - Case Study

Three - cell aerated lagoon Daily flow - 785,000 gpd

Influent - $BOD_5 = 74 - 287 \text{ mg/L}$ Influent - TSS = 94 - 444 mg/L

Permit limits - BOD_5 45 mg/L, TSS 45 mg/L

Salem - Case Study

No violations in 2005 - 2007

Average TSS 1998 - 2004 - 29 mg/L

Average TSS 2005 - 23 mg/L

Average TSS 2006 - 16 mg/L

46.2 % decrease in TSS values

Appears to show better response in second year

Decomposing Barley Straw

SUFO - Case Study

About 250 miles South of Salt Lake

Large Coal Mine

Runoff sediment pond

Small receiving stream - Quichapah Creek

Annual suspended solids problem

UNCLEAR IF IT WORK!

SUFO - Case Study

No BOD samples TSS appears to be seasonal No 2005 spike

Decomposing Barley Straw

Eureka - Case Study

About 50 miles Southwest of Salt Lake
Population 700
Losing population
Small receiving stream - Dry Wash
Annual suspended solids problem (surprise!)
DID NOT WORK!

Study Conclusions

Algae blooms appear to be effected by the straw
Has reduced the number of permit violations
Reduced the TSS discharged

Reduced the chlorine demand

Simple

Chean

Cynobacteria does not seem effected by barley

